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Figure 1. Stable Video 3D (SV3D). From a single image, SV3D generates consistent novel multi-view images. We then optimize a 3D
representation with SV3D generated views resulting in high-quality 3D meshes.

Abstract

We present Stable Video 3D (SV3D) — a latent video dif-
fusion model for high-resolution, image-to-multi-view gen-
eration of orbital videos around a 3D object. Recent work
on 3D generation propose techniques to adapt 2D genera-
tive models for novel view synthesis (NVS) and 3D optimiza-
tion. However, these methods have several disadvantages
due to either limited views or inconsistent NVS, thereby af-
fecting the performance of 3D object generation. In this
work, we propose SV3D that adapts image-to-video diffu-
sion model for novel multi-view synthesis and 3D genera-
tion, thereby leveraging the generalization and multi-view
consistency of the video models, while further adding ex-
plicit camera control for NVS. We also propose improved
3D optimization techniques to use SV3D and its NVS out-
puts for image-to-3D generation. Extensive experimental
results on multiple datasets with 2D and 3D metrics as well
as user study demonstrate SV3D’s state-of-the-art perfor-
mance on NVS as well as 3D reconstruction compared to
prior works.

* Core technical contribution.

1. Introduction

Single-image 3D object reconstruction is a long-standing
problem in computer vision with a wide range of applica-
tions in game design, AR/VR, e-commerce, robotics, etc. It
is a highly challenging and ill-posed problem as it requires
lifting 2D pixels to 3D space while also reasoning about the
unseen portions of the object in 3D.

Despite being a long-standing vision problem, it is only
recently that practically useful results are being produced
by leveraging advances in the generative AI. This is mainly
made possible by the large-scale pretraining of genera-
tive models which enables sufficient generalization to var-
ious domains. A typical strategy is to use image-based
2D generative models (e.g., Imagen [39], Stable Diffusion
(SD) [37]) to provide a 3D optimization loss function for
unseen novel views of a given object [20, 28, 34]. In ad-
dition, several works repurpose these 2D generative mod-
els to perform novel view synthesis (NVS) from a single
image [23, 24, 27, 50], and then use the synthesized novel
views for 3D generation. Conceptually, these works mimic
a typical photogrammetry-based 3D object capture pipeline,
i.e., first photographing multi-view images of an object, fol-
lowed by 3D optimization; except that the explicit multi-
view capture is replaced by novel-view synthesis using a
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generative model, either via text prompt or camera pose
control.

A key issue in these generation-based reconstruction
methods is the lack of multi-view consistency in the un-
derlying generative model resulting in inconsistent novel
views. Some works [6, 15, 24] try to address the multi-view
consistency by jointly reasoning a 3D representation during
NVS, but this comes at the cost of high computational and
data requirements, often still resulting in unsatisfactory re-
sults with inconsistent geometric and texture details. In this
work, we tackle these issues by adapting a high-resolution,
image-conditioned video diffusion model for NVS followed
by 3D generation.

Novel Multi-view Synthesis. We adapt a latent video diffu-
sion model (Stable Video Diffusion - SVD [2]) to generate
multiple novel views of a given object with explicit camera
pose conditioning. SVD demonstrates excellent multi-view
consistency for video generation, and we repurpose it for
NVS. In addition, SVD also has good generalization capa-
bilities as it is trained on large-scale image and video data
that are more readily available than large-scale 3D data. In
short, we adapt the video diffusion model for NVS from a
single image with three useful properties for 3D object gen-
eration: pose-controllable, multi-view consistent, and gen-
eralizable. We call our resulting NVS network ‘SV3D’. To
our knowledge, this is the first work that adapts a video
diffusion model for explicit pose-controlled view synthe-
sis. Some contemporary works such as [2, 26] demonstrate
the use of video models for view synthesis, but they typi-
cally only generate orbital videos without any explicit cam-
era control.

3D Generation. We then utilize our SV3D model for 3D
object generation by optimizing a NeRF and DMTet mesh
in a coarse-to-fine manner. Benefiting from the multi-view
consistency in SV3D, we are able to produce high-quality
3D meshes directly from the SV3D novel view images. We
also design a masked score distillation sampling (SDS) [34]
loss to further enhance 3D quality in the regions that are
not visible in the SV3D-predicted novel views. In addition,
we propose to jointly optimize a disentangled illumination
model along with 3D shape and texture, effectively reducing
the issue of baked-in lighting.

We perform extensive comparisons of both our NVS and
3D generation results with respective state-of-the-art meth-
ods, demonstrating considerably better outputs with SV3D.
For NVS, SV3D shows high-level of multi-view consis-
tency and generalization to real-world images while being
pose controllable. Our resulting 3D meshes are able to cap-
ture intricate geometric and texture details.

2. Background
2.1. Novel View Synthesis

We organize the related works along three crucial aspects of
novel view synthesis (NVS): generalization, controllability,
and multi-view (3D) consistency.
Generalization. Diffusion models [14, 45] have recently
shown to be powerful generative models that can generate a
wide variety of images [3, 37, 38] and videos [2, 12, 49] by
iteratively denoising a noise sample. Among these models,
the publicly available Stable Diffusion (SD) [37] and Sta-
ble Video Diffusion (SVD) [2] demonstrate strong general-
ization ability by being trained on extremely large datasets
like LAION [40] and LVD [2]. Hence, they are commonly
used as foundation models for various generation tasks, e.g.
novel view synthesis.
Controllability. Ideally, a controllable NVS model al-
lows us to generate an image corresponding to any arbi-
trary viewpoint. For this, Zero123 [23] repurposes an im-
age diffusion model to a novel view synthesizer, condi-
tioned on a single-view image and the pose difference be-
tween the input and target views. Follow-up works such as
Zero123XL [8] and Stable Zero123 [46] advance the qual-
ity of diffusion-based NVS, as well as the trained NeRFs
using SDS loss. However, these methods only generate one
novel view at a time, and thus are not designed to be multi-
view consistent inherently. Recent works such as Escher-
Net [18] and Free3D [60] are capable of generating with
intelligent camera position embedding design encouraging
better multi-view consistency. However, they only make
use of image-based diffusion models, and generate images
at 256×256 resolution. We finetune a video diffusion model
to generate novel views at 576×576 resolution.
Multi-view Consistency. Multi-view consistency is the
most critical requirement for high-quality NVS and 3D gen-
eration. To address the inconsistency issue in prior works,
MVDream [43], SyncDreamer [24], HexGen3D [27], and
Zero123++ [42] propose to generate multiple (specific)
views of an object simultaneously. However, they are
not controllable: they only generate specific views given
a conditional image, not arbitrary viewpoints. Moreover,
they were finetuned from image-based diffusion models,
i.e. multi-view consistency was imposed on image-based
diffusion by adding interaction among the multiple gener-
ated views through cross-attention layers. Hence, their out-
put quality is limited to the generalization capability of the
image-based model they finetuned from, as well as the 3D
dataset they were finetuned on. Efficient-3DiM finetunes
the SD model with a stronger vision transformer DINO
v2 [33]. Consistent-1-to-3 [55] and SPAD leverage epipolar
geometry to generate multiview consistent images. One-2-
3-45 [22] and One-2-3-45++ [21] train additional 3D net-
work using the outputs of 2D generator. MVDream [43],
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Consistent123 [51], and Wonder3D [25] also train multi-
view diffusion models, yet still require post-processing for
video rendering. SyncDreamer [24] and ConsistNet [53]
employ 3D representation into the latent diffusion model.
Exploiting Video Diffusion Models. To achieve better
generalization and multi-view consistency, some contem-
porary works exploit the temporal priors in video diffu-
sion models for NVS. For instance, Vivid-1-to-3 [19] com-
bines a view-conditioned diffusion model and video dif-
fusion model to generate consistent views. SVD-MV [2]
and IM-3D [26] finetune a video diffusion model for NVS.
However, they generate ≤ 360◦ views at the same elevation
only. Unlike SV3D, none of them are capable of rendering
any arbitrary view of the 3D object.

We argue that the existing NVS and 3D generation meth-
ods do not fully leverage the superior generalization ca-
pability, controllability, and consistency in video diffusion
models. In this paper, we fill this important gap and train
SV3D, a state-of-the-art novel multi-view synthesis video
diffusion model at 576×576 resolution, and leverage it for
3D generation.

2.2. 3D Generation

Recent advances in 3D representations and diffusion-based
generative models have significantly improved the quality
of image-to-3D generation. Here, we briefly summarize the
related works in these two categories.
3D Representation. 3D generation has seen great progress
since the advent of Neural Radiance Fields (NeRFs) [29]
and its subsequent variants [1], which implicitly represents
a 3D scene as a volumetric function, typically parameter-
ized by a neural network. Notably, Instant-NGP [30] in-
troduces a hash grid feature encoding that can be used
as a NeRF backbone for fast inference and ability to re-
cover complex geometry. On the other hand, several re-
cent works improve from an explicit representation such as
DMTet [41], which is capable of generating high-resolution
3D shapes due to its hybrid SDF-Mesh representation and
high memory efficiency. Similar to [20, 35], we adopt
coarse-to-fine training for 3D generation, by first learning
a rough object with Instant-NGP NeRF and then refining it
using the DMTet representation.
Diffusion-Based 3D Generation. Several recent
works [16, 31] train a 3D diffusion model to to learn
these flexible 3D representations, which, however, lack
generalization ability due to the scarcity of 3D data.
To learn 3D generation without ground truth 3D data,
image/multi-view diffusion models have been used as
guidance for 3D generation. DreamFusion [34] and
its follow-up works [20, 28] leverage a trained image
diffusion model as a ‘scoring’ function and calculate the
SDS loss for text-to-3D generation. However, they are
prone to artifacts like Janus problem [28, 34] and over-

saturated texture. Inspired by Zero123 [23], several recent
works [18, 21, 22, 24, 26, 35, 42, 46, 60] finetune image or
video diffusion models to generate novel view images as a
stronger guidance for 3D generation. Our method shares
the same spirit as this line of work, but produces denser,
controllable, and more consistent multi-view images, thus
resulting in better 3D generation quality.

3. SV3D: Novel Multi-view Synthesis

Our main idea is to repurpose temporal consistency in a
video diffusion model for spatial 3D consistency of an ob-
ject. Specifically, we finetune SVD [2] to generate an orbital
video around a 3D object, conditioned on a single-view im-
age. This orbital video need not be at the same elevation, or
at regularly spaced azimuth angles. SVD is well-suited for
this task since it is trained to generate smooth and consis-
tent videos on large-scale datasets of real and high-quality
videos. The exposure to superior data quantity and quality
makes it more generalizable and multi-view consistent, and
the flexibility of the SVD architecture makes it amenable to
be finetuned for camera controllability.

Some prior works attempt to leverage such properties
by finetuning image diffusion models, training video dif-
fusion models from scratch, or finetuning video diffusion
models to generate pre-defined views at the same eleva-
tion (static orbit) around an object [2, 26]. However, we
argue that these methods do not fully exploit the potential
of video diffusion models. To the best of our knowledge,
SV3D is the first video diffusion-based framework for con-
trollable multi-view synthesis at 576×576 resolution (and
subsequently for 3D generation).
Problem Setting. Formally, given an image I ∈ R3×H×W

of an object, our goal is to generate an orbital video J ∈
RK×3×H×W around the object consisting of K = 21 multi-
view images along a camera pose trajectory π ∈ RK×2 =
{(ei, ai)}Ki=1 as a sequence of K tuples of elevation e and
azimuth a angles. We assume that the camera always looks
at the center of an object (origin of the world coordinates),
and so any viewpoint can be specified by only two parame-
ters: elevation and azimuth. We generate this orbital video
by iteratively denoising samples from a learned conditional
distribution p(J|I,π), parameterized by a video diffusion
model.
SV3D Architecture. As shown in Fig. 2, the architecture of
SV3D builds on that of SVD consisting of a UNet with mul-
tiple layers, each layer containing sequences of one resid-
ual block with Conv3D layers, and two transformer blocks
(spatial and temporal) with attention layers. (i) We remove
the vector conditionings of ‘fps id’ and ‘motion bucket id’
since they are irrelevant for SV3D. (ii) The conditioning
image is concatenated to the noisy latent state input zt at
noise timestep t to the UNet, after being embedded into
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Figure 2. SV3D Architecture. We add the sinusoidal embedding of the camera orbit elevation
and azimuth angles (e, a) to that of the noise step t, and feed the sum to the convolutional blocks
in the UNet. We feed the single input image’s CLIP embedding to the attention blocks, and
concatenate its latent embedding to the noisy state zt.

Static

Dynamic

Figure 3. Static vs. Dynamic Or-
bits. We use two types of orbits for
training the SV3D models.

latent space by the VAE encoder of SVD. (iii) The CLIP-
embedding [36] matrix of the conditioning image is pro-
vided to the cross-attention layers of each transformer block
as its key and value, the query being the feature at that
layer. (iv) The camera trajectory is fed into the residual
blocks along with the diffusion noise timestep. The cam-
era pose angles ei and ai and the noise timestep t are first
embedded into sinusoidal position embeddings. Then, the
camera pose embeddings are concatenated together, linearly
transformed, and added to the noise timestep embedding.
This is fed to every residual block, where they are added to
the block’s output feature (after being linearly transformed
again to match the feature size).
Static v.s. Dynamic Orbits. As shown in Fig. 3, we design
static and dynamic orbits to study the effects of camera pose
conditioning. In a static orbit, the camera circles around an
object at regularly-spaced azimuths at the same elevation
angle as that in the conditioning image. The disadvantage
with the static orbit is that we might not get any informa-
tion about the top or bottom of the object depending on the
conditioning elevation angle. In a dynamic orbit, the az-
imuths can be irregularly spaced, and the elevation can vary
per view. To build a dynamic orbit, we sample a static or-
bit, add small random noise to the azimuth angles, and add
a random weighted combination of sinusoids with different
frequencies to its elevation. This provides temporal smooth-
ness, and ensures that the camera trajectory loops around to
end at the same azimuth and elevation as those of the con-
ditioning image.

Thus, with this strategy, we are able to tackle all three

aspects of generalization, controllability, and consistency
in novel multi-view synthesis by leveraging video diffusion
models, providing the camera trajectory as additional con-
ditioning, and repurposing temporal consistency for spatial
3D consistency of the object, respectively.
Triangular CFG Scaling. SVD uses a linearly increasing
scale for classifier-free guidance (CFG) from 1 to 4 across
the generated frames. However, this scaling causes the last
few frames in our generated orbits to be over-sharpened, as
shown in Fig. 4 Frame 20. Since we generate videos looping
back to the front-view image, we propose to use a triangle
wave CFG scaling during inference: linearly increase CFG
from 1 at the front view to 2.5 at the back view, then linearly
decrease it back to 1 at the front view. Fig. 4 also demon-
strates that our triangle CFG scaling produces more details
in the back view (Frame 12).
Models. We train three image-to-3D-video models fine-
tuned from SVD. First, we train a pose-unconditioned
model, SV3Du, which generates a video of static orbit
around an object while only conditioned on a single-view
image. Note that unlike SVD-MV [2], we do not pro-
vide the elevation angle to the pose-unconditioned model,
as we find that the model is able to infer it from the con-
ditioning image. Our second model, the pose-conditioned
SV3Dc is conditioned on the input image as well as a se-
quence of camera elevation and azimuth angles in an orbit,
trained on dynamic orbits. Following SVD’s [2] intuition
to progressively increase the task difficulty during training,
we train our third model, SV3Dp, by first finetuning SVD
to produce static orbits unconditionally, then further fine-
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Figure 4. Linear vs. Triangle CFG Scaling. Notice the increased oversharping in
the penultimate frame in the linear scaling vs. our proposed triangle scaling.
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Figure 5. LPIPS vs. Frame Number. We find that
SV3D has the best reconstruction metric per frame.

tuning on dynamic orbits with camera pose condition.
Training Details. We train SV3D on the Objaverse
dataset [9], which contains synthetic 3D objects covering
a wide diversity. For each object, we render 21 frames
around it on random color background at 576×576 reso-
lution, field-of-view of 33.8 degrees. We choose to finetune
the SVD-xt model to output 21 frames. All three models
(SV3Du, SV3Dc, SV3Dp) are trained for 105k iterations in
total (SV3Dp is trained unconditionally for 55k iterations
and conditionally for 50k iterations), with an effective batch
size of 64 on 4 nodes of 8 80GB A100 GPUs for around 6
days. For more training details, please see the appendix.

3.1. Experiments and Results

Datasets. We evaluate the SV3D synthesized multi-view
images on static and dynamic orbits on the unseen GSO [10]
and OmniObject3D [52] datasets. Since many GSO objects
are the same items with slightly different colors, we filter
300 objects from GSO to reduce redundancy and maintain
diversity. For each object, we render ground truth static and
dynamic orbit videos and pick the last frame of each video
as the conditioning image. We also conduct a user study on
novel view videos from a dataset of 22 real-world images.
See the appendix for more details on the datasets.
Metrics. We use the SV3D models to generate static and
dynamic orbit videos corresponding to the ground truth
camera trajectories in the evaluation datasets. We com-
pare each generated frame with the corresponding ground
truth frames, in terms of Learned Perceptual Similarity
(LPIPS [59]), Peak Signal-to-Noise Ratio (PSNR), Struc-
tural SIMilarity (SSIM), Mean Squared-Error (MSE), and
CLIP-score (CLIP-S). This range of metrics covers both
pixel-level as well as semantic aspects. Note that testing on

dynamic orbits evaluates the controllability of SV3D mod-
els, and all the metrics evaluate multi-view consistency.
Baselines. We compare SV3D with several recent NVS
methods capable of generating arbitrary views, including
Zero123 [23], Zero123-XL [8], SyncDreamer [24], Stable
Zero123 [46], Free3D [60], EscherNet [18].
Results. As shown in Tables 1 to 4, our SV3D models
achieve state-of-the-art performance on novel multi-view
synthesis. Tables 1 and 3 show results on static orbits,
and include all our three models. We see that even our
pose-unconditioned model SV3Du performs better than all
prior methods. Tables 2 and 4 show results on dynamic or-
bits, and include our pose-conditioned models SV3Dc and
SV3Dp.
Ablative Analyses. Interestingly, from Tables 1 and 3, we
find that both SV3Dc and SV3Dp outperform SV3Du on
generations of static orbits, even though SV3Du is trained
specifically on static orbits. We also observe that SV3Dp

achieves better metrics than SV3Dc on both static and dy-
namic orbits, making it the best performing SV3D model
overall. This shows that progressive finetuning from easier
(static) to harder (dynamic) tasks is indeed a favorable way
to finetune a video diffusion model.
Visual Comparisons in Fig. 6 further demonstrate that
SV3D-generated images are more detailed, faithful to the
conditioning image, and multi-view consistent compared to
the prior works.
Quality Per Frame. We also observe from Fig. 5 that
SV3D produces better quality at every frame. We plot the
average LPIPS value for each generated frame, across gen-
erated GSO static orbit videos. The quality is generally
worse around the back view, and better at the beginning and
the end (i.e. near the conditioning image), as expected.

5



Figure 6. Visual Comparison of Novel Multi-view Synthesis. SV3D is able to generate novel multi-views that are more detailed, faithful
to the conditioning image, and multi-view consistent compared to the prior works.

Table 1. Evaluation of novel multi-view synthesis on GSO static
orbits

Model LPIPS↓ PSNR↑ SSIM↑ CLIP-S↑ MSE↓
SyncDreamer [24] 0.17 15.78 0.76 0.87 0.03
Zero123 [23] 0.13 17.29 0.79 0.85 0.04
Zero123XL [8] 0.14 17.11 0.78 0.85 0.04
Stable Zero123 [46] 0.13 18.34 0.78 0.85 0.05
Free3D [60] 0.15 16.18 0.79 0.84 0.04
EscherNet [18] 0.13 16.73 0.79 0.85 0.03

SV3Du 0.09 21.14 0.87 0.89 0.02
SV3Dc 0.09 20.56 0.87 0.88 0.02
SV3Dp 0.08 21.26 0.88 0.89 0.02

User Study on Real-World Images. We conducted a user
survey to study human preference between static orbital
videos generated by SV3D and by other methods. We asked
30 users to pick one between our SV3D-generated static
video and other method-generated video as the best orbital
video for the corresponding image, using 22 real-world im-
ages. We noted that users preferred SV3D-generated videos
over Zero123XL, Stable Zero123, EscherNet, and Free3D,
96%, 99%, 96%, and 98% of the time, respectively.

Table 2. Evaluation of novel multi-view synthesis on GSO dy-
namic orbits

Model LPIPS↓ PSNR↑ SSIM↑ CLIP-S↑ MSE↓
Zero123 [23] 0.14 16.99 0.79 0.84 0.04
Zero123XL [8] 0.14 16.73 0.78 0.84 0.04
Stable Zero123 [46] 0.13 18.04 0.78 0.85 0.05
Free3D [60] 0.18 14.93 0.77 0.83 0.05
EscherNet [18] 0.13 16.47 0.79 0.84 0.03

SV3Dc 0.10 19.99 0.86 0.87 0.02
SV3Dp 0.09 20.38 0.87 0.87 0.02

4. 3D Generation from a Single Image Using
SV3D

We then generate 3D meshes of objects from a single im-
age by leveraging SV3D. One way is to use the generated
static/dynamic orbital samples from SV3D as direct recon-
struction targets. Another way is to use SV3D as diffusion
guidance with Score Distillation Sampling (SDS) loss [34].

Since SV3D produces more consistent multi-views com-
pared to existing works, we already observe higher-quality
3D reconstructions by only using SV3D outputs for recon-
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Table 3. Evaluation of novel multi-view synthesis on OmniOb-
ject3D static orbits

Model LPIPS↓ PSNR↑ SSIM↑ CLIP-S↑ MSE↓
Zero123 [23] 0.17 15.50 0.76 0.83 0.05
Zero123XL [8] 0.18 15.36 0.75 0.83 0.06
Stable Zero123 [46] 0.15 16.86 0.77 0.84 0.06
Free3D [60] 0.16 15.29 0.78 0.83 0.05
EscherNet [18] 0.17 14.63 0.74 0.83 0.05

SV3Du 0.10 19.68 0.86 0.86 0.02
SV3Dc 0.10 19.50 0.85 0.85 0.02
SV3Dp 0.10 19.91 0.86 0.86 0.02

Table 4. Evaluation of novel multi-view synthesis on OmniOb-
ject3D dynamic orbits

Model LPIPS↓ PSNR↑ SSIM↑ CLIP-S↑ MSE↓
Zero123 [23] 0.16 15.78 0.77 0.82 0.05
Zero123XL [8] 0.17 15.49 0.76 0.83 0.05
Stable Zero123 [46] 0.14 16.74 0.77 0.83 0.05
Free3D [60] 0.19 14.28 0.76 0.82 0.06
EscherNet [18] 0.16 15.05 0.76 0.83 0.05

SV3Dc 0.10 19.21 0.85 0.84 0.02
SV3Dp 0.10 19.28 0.85 0.85 0.02

struction when compared to existing works. However, we
observe that this naive approach often leads to artifacts like
baked-in illumination, rough surfaces, and noisy texture, es-
pecially for the unseen regions in the reference orbit. Thus,
we further propose several techniques to address these is-
sues.
Coarse-to-Fine Training. We adopt a two-stage, coarse-
to-fine training scheme to generate a 3D mesh from input
images, similar to [20, 35]. Fig. 7 illustrate an overview

of our 3D optimization pipeline. In the coarse stage, we
train an Instant-NGP [30] NeRF representation to recon-
struct the SV3D-generated images (i.e. without SDS loss)
at a lower resolution. In the fine stage, we extract a
mesh from the trained NeRF using marching cubes [7], and
adopt a DMTet [41] representation to finetune the 3D mesh
using SDS-based diffusion guidance from SV3D at full-
resolution. Finally, we use xatlas [56] to perform the UV
unwrapping and export the output object mesh.

Constant Illumination SGs Illumination

Figure 8. Constant vs. SGs Illumination. Notice that our
SGs-based reconstructions do not exhibit darkening on the side
of the bus, which enables easier and more convincing relighting
for downstream applications.

Disentangled Illumination Model. Similar to other recent
3D object generation methods [20, 28, 34], our output target
is a mesh with a diffuse texture. Typically, such SDS-based
optimization techniques use random illuminations at every
iteration. However, our SV3D-generated videos are un-
der consistent illumination, i.e., the lighting remains static
while the camera circles around an object. Hence, to dis-
entangle lighting effects and obtain a cleaner texture, we
propose to fit a simple illumination model of 24 Spheri-
cal Gaussians (SG) inspired by prior decomposition meth-
ods [4, 58]. We model white light and hence only use a
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scalar amplitude for the SGs. We only consider Lambertian
shading, where the cosine shading term is approximated
with another SG. We learn the parameters of the illumina-
tion SGs using a reconstruction loss between the rendered
images and SV3D-generated images.

Figure 9. Influence of Training Orbits. We show that using a
dynamic orbit is crucial to 3D generations that are complete from
diverse views.

Figure 10. Influence of SDS. Using our masked SDS loss, we
are able to fill in unseen surfaces in the training orbit, producing a
cleaner result without oversaturation or blurry artifacts caused by
naive SDS.

Inspired by [13, 34] we reduce baked-in illumination
with a loss term that replicates the HSV-value component of
the input image I with the rendered illumination L: Lillum =
|V (I)− L|2, with V (c) = max(cr, cg, cb). Given these
changes, our disentangled illumination model is able to ex-
press lighting variation properly and can severely reduce
baked-in illumination. Fig. 8 shows sample reconstructions
with and without our illumination modelling. From the re-

sults, it is clear that we are able to disentangle the illumina-
tion effects from the base color (e.g., dark side of the school
bus).

4.1. 3D Optimization Strategies and Losses

Reconstruction via Photometric Losses. Intuitively, we
can treat the SV3D-generated images as multi-view pseudo-
ground truth, and apply 2D reconstruction losses to train the
3D models. In this case, we apply photometric losses on the
rendered images from NeRF or DMTet, including the pixel-
level MSE loss, mask loss, and a perceptual LPIPS [59]
loss. These photometric losses also optimize our illumina-
tion model through the differential rendering pipeline.
Training Orbits. For 3D generation, we use SV3D to
generate multi-view images following a camera orbit πref,
referred to as the reference orbit (also see Fig. 7 for the
overview). Fig. 9 shows sample reconstruction with using
static and dynamic orbital outputs from SV3D. Using a dy-
namic orbit for training is crucial to high-quality 3D out-
puts when viewed from various angles, since some top/bot-
tom views are missing in the static orbit (fixed elevation).
Hence, for SV3Dc and SV3Dp, we render images on a dy-
namic orbit whose elevation follows a sine function to en-
sure that top and bottom views are covered.
SV3D-Based SDS Loss. In addition to the reconstruction
losses, we can also use SV3D via score-distillation sam-
pling (SDS) [34, 54]. Fig. 10 shows sample reconstructions
with and without using SDS losses. As shown in Fig. 10
(left), although training with a dynamic orbit improves over-
all visibility, we observe that sometimes the output texture is
still noisy, perhaps due to partial visibility, self-occlusions,
or inconsistent texture/shape between images. Hence, we
handle those unseen areas using SDS loss [34] with SV3D
as a diffusion guidance.

We sample a random camera orbit πrand, and use our
3D NeRF/DMTet parameterized by θ to render the views
Ĵ of the object along πrand. Then, noise ϵ at level t is
added to the latent embedding zt of Ĵ, and the following
SDS loss (taken expectation over t and ϵ) is backpropa-
gated through the differentiable rendering pipeline: Lsds =

w(t)
(
ϵϕ(zt; I,πrand, t) − ϵ

)
∂Ĵ
∂θ , where w is t-dependent

weight, ϵ and ϵϕ are the added and predicted noise, and ϕ
and θ are the parameters of SV3D and NeRF/DMTet, re-
spectively. See Fig. 7 for an illustration of these loss func-
tions in the overall pipeline.
Masked SDS Loss. As shown in Fig. 10 (middle), in our
experiments we found that adding the SDS loss naively can
cause unstable training and unfaithful texture to the input
images such as oversaturation or blurry artifacts. Therefore,
we design a soft masking mechanism to only apply SDS
loss on the unseen/occluded areas, allowing it to inpaint
the missing details while preserving the texture of clearly-
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visible surfaces in the training orbit (as seen in Fig. 10
(right)). Also, we only apply the masked SDS loss in the
final stage of DMTet optimization, which greatly increased
the convergence speed.

We apply SDS loss on only those pixels in the random
orbit views that are not likely visible in the reference orbit
views. For this, we first render the object from the random
camera orbit πrand. For each random camera view, we ob-
tain the visible surface points p ∈ R3 and their correspond-
ing surface normals n. Then, for each reference camera
i, we calculate the view directions vi of the surface p to-
wards its position π̄i

ref ∈ R3 (calculated from πi
ref ∈ R2)

as vi =
π̄i

ref−p

||π̄i
ref−p|| . We infer the visibility of this surface

from the reference camera based on the dot product between
vi and n i.e. vi · n. Since higher values roughly indicate
more visibility of the surface from the reference camera,
we chose that reference camera c that has maximum likeli-
hood of visibility: c = maxi (vi · n). As we only want to
apply SDS loss to unseen or grazing angle areas from c, we
use the smoothstep function fs to smoothly clip to c’s visi-
bility range vc · n. In this way, we create a pseudo visibil-
ity mask M = 1− fs (vc · n, 0, 0.5), where fs(x; f0, f1) =
x̂2(3−2x), with x̂ = x−f0

f1−f0
. Thus, M is calculated for each

random camera render, and the combined visibility mask M
is applied to SDS loss: Lmask-sds = MLsds.
Geometric Priors. Since our rendering-based optimization
operates at the image level, we adopt several geometric pri-
ors to regularize the output shapes. We add a smooth depth
loss from RegNeRF [32] and a bilateral normal smoothness
loss [5] to encourage smooth 3D surfaces where the pro-
jected image gradients are low. Moreover, we obtain normal
estimates from Omnidata [11] and calculate a mono normal
loss similar to MonoSDF [57], which can effectively reduce
noisy surfaces in the output mesh. Further details about the
training losses and optimization process are available in the
appendix.

4.2. Experiments and Results

Due to the strong regularization, we only require 600 steps
in the coarse stage and 1000 in the fine stage. Overall, the
entire mesh extraction process takes ≈8 minutes without
SDS loss, and ≈20 minutes with SDS loss. The coarse stage
only takes ≈2 minutes and provides a full 3D representation
of the object.
Evaluation. We evaluate our 3D generation framework on
50 randomly sampled objects from the GSO dataset as de-
scribed in Sec. 3.1. We compute image-based reconstruc-
tion metrics (LPIPS, PSNR, SSIM, MSE, and CLIP-S) be-
tween the ground truth (GT) GSO images, and rendered
images from the trained 3D meshes on the same static/-
dynamic orbits. In addition, we compute 3D reconstruc-
tion metrics of Chamfer distance (CD) and 3D IoU between

the GT and predicted meshes. We compare our SV3D-
guided 3D generations with several prior methods includ-
ing Point-E [31], Shap-E [16], One-2-3-45++ [21], Dream-
Gaussian [47], SyncDreamer [24], EscherNet [18], Free3D
[60], and Stable Zero123 [46].
Visual Comparison. In Fig. 11, we show visual com-
parison of our results with those from prior methods.
Qualitatively, Point-E [31] and Shap-E [16] often pro-
duce incomplete 3D shapes. DreamGaussian [47], Sync-
Dreamer [24], EscherNet [18], and Free3D [60] outputs
tend to contain rough surfaces. One-2-3-45++ [21] and
Stable Zero123 [46] are able to reconstruct meshes with
smooth surface, but lack geometric details. Our mesh out-
puts are detailed, faithful to input image, and consistent in
3D (see appendix for more examples). We also show 3D
mesh renders from real-world images in Fig. 12.
Quantitative Comparison. Tables 5 and 6 show the 2D
and 3D metric comparisons respectively. All our 3D models
achieve better 2D and 3D metrics compared to the prior and
concurrent methods, showing the high-fidelity texture and
geometry of our output meshes. We render all 3D meshes
on the same dynamic orbits and compare them against the
GT renders. Our best model, SV3Dp, performs comparably
to using GT renders for reconstruction in terms of the 3D
metrics, which further demonstrates the 3D consistency of
our generated images.
Effects of Photometric and (Masked) SDS Loss. As
shown in Tables 5 and 6, the 3D outputs using both pho-
tometric and Masked SDS losses (‘SV3Dp’) achieves the
best results, while training without SDS (‘SV3Dp no SDS’)
leads to marginally lower performance. This demonstrates
that the images generated by SV3D are high-quality recon-
struction targets, and are often sufficient for 3D generation
without the cumbersome SDS-based optimization. Nev-
ertheless, adding SDS generally improves quality, as also
shown in Fig. 10.
Effects of SV3D Model and Training Orbit. As shown
in Tables 5 and 6, SV3Dp achieves the best performance
among the three SV3D models, indicating that its synthe-
sized novel views are most faithful to the input image and
consistent in 3D. On the other hand, SV3Du shares the same
disadvantage as several prior works in that it can only gen-
erate views at the same elevation, which is insufficient to
build a legible 3D object, as shown in Fig. 9. This also
leads to the worse performance of ‘SV3Dp with static orbit’
in Tables 5 and 6. Overall, SV3Dp with dynamic orbit and
masked SDS loss performs favorably against all other con-
figurations since it can leverage more diverse views of the
object.
Limitations. Our SV3D model is by design only capa-
ble of handling 2 degrees of freedom: elevation and az-
imuth; which is usually sufficient for 3D generation from
a single image. One may want to tackle more degrees of
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Figure 11. Visual Comparison of 3D Meshes. For each object, we show the conditioning image (left), and the output meshes rendered in
two different views. Our generated meshes are more detailed, faithful to input images, and consistent in 3D. This demonstrates the quality
of novel multi-view synthesis by our SV3D model.

Figure 12. Real-World 3D Results. Notice the accurate shape and details in our reconstructions even from the diverse images in-the-wild.

Table 5. 2D comparison of our 3D outputs against prior methods
on the GSO dataset. Our best performing method uses SV3Dp

with dynamic (sine elevation) orbit and SDS guidance. Note that
all our models achieve better 2D metrics than prior works.

Model LPIPS↓ PSNR↑ SSIM↑ MSE↓ CLIP-S↑
GT renders 0.078 19.508 0.879 0.014 0.897

EscherNet [18] 0.178 14.438 0.804 0.041 0.835
Free3D [60] 0.197 14.202 0.799 0.043 0.809
Stable Zero123 [46] 0.166 14.635 0.813 0.040 0.805

SV3Du 0.133 15.957 0.834 0.031 0.871
SV3Dc 0.132 16.373 0.834 0.027 0.870
SV3Dp static orbit 0.125 16.821 0.848 0.025 0.864
SV3Dp no SDS 0.124 16.864 0.841 0.024 0.875
SV3Dp 0.119 17.405 0.849 0.021 0.877

freedom in cameras for a generalized NVS system, which
forms an interesting future work. We also notice that SV3D
exhibits some view inconsistency for mirror-like reflective
surfaces, which provide a challenge to 3D reconstruction.
Lastly, such reflective surfaces are not representable by our
Lambertian reflection-based shading model. Conditioning
SV3D on the full camera matrix, and extending the shading
model are interesting directions for future research.

Table 6. Comparison of 3D metrics. Our models perform favor-
ably against prior works.

Model CD↓ 3D IoU↑
GT renders 0.021 0.689

Point-E [31] 0.074 0.162
Shap-E [16] 0.071 0.267
DreamGaussian [47] 0.055 0.411
One-2-3-45++ [21] 0.054 0.406
SyncDreamer [24] 0.053 0.451
EscherNet [18] 0.042 0.466
Free3D [60] 0.047 0.426
Stable Zero123 [46] 0.039 0.550

SV3Du 0.027 0.589
SV3Dc 0.027 0.584
SV3Dp static orbit 0.028 0.610
SV3Dp no SDS 0.024 0.611
SV3Dp 0.024 0.614

5. Conclusion

We present SV3D, a latent video diffusion model for novel
multi-view synthesis and 3D generation. In addition to
leveraging the generalizability and view-consistent prior in
SVD, SV3D enables controllability via camera pose con-
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ditioning, and generates orbital videos of an object at high
resolution on arbitrary camera orbits. We further propose
several techniques for improved 3D generation from SV3D,
including triangle CFG scaling, disentangled illumination,
and masked SDS loss. We conduct extensive experiments to
show that SV3D is controllable, multi-view consistent, and
generalizable to the real-world, achieving state-of-the-art
performance on novel multi-view synthesis and 3D genera-
tion. We believe SV3D provides a solid foundation model
for further research on 3D object generation. We plan to
publicly release SV3D models.
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Appendix

A. Broader Impact
The advancement of generative models in different media forms is changing how we make and use content. These AI-
powered models can create images, videos, 3D objects, and more, in ways we’ve never seen before. They offer huge potential
for innovation in media production. But along with this potential, there are also risks. Before we start using these models
widely, it is crucial to make sure we understand the possible downsides and have plans in place to deal with them effectively.

In the case of 3D object generation, the input provided by the user plays a crucial role in constraining the model’s output.
By supplying a full front view of an object, users limit the model’s creative freedom to the visible or unoccluded regions,
thus minimizing the potential for generating problematic imagery. Additionally, factors such as predicted depth values and
lighting further influence the fidelity and realism of generated content.

Moreover, ensuring the integrity and appropriateness of training data is critical in mitigating risks associated with
generative models. Platforms like Sketchfab, which serve as repositories for 3D models used in training, enforce
strict content policies to prevent the dissemination of “Unacceptable Content” and disallows it on their platform:
https://help.sketchfab.com/hc/en-us/articles/214867883-What-is-Restricted-Content. By adhering to these guidelines and ac-
tively monitoring dataset quality, developers can reduce the likelihood of biased or inappropriate outputs.
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Sketchfab also has a tag for “Restricted Content” which is deemed to be similar to the PG-13 content rating used in the
US (i.e. inappropriate for children under 13). We have confirmed that none of the objects that we use in training have this
flag set to true. Thus we go the extra step of excluding even tagged PG-13 content from the training set.

There is a chance that certain content may not have been correctly labeled on Sketchfab. In cases where the uploader fails
to tag an object appropriately, Sketchfab provides publicly accessible listings of objects and a mechanism for the community
to report any content that may be deemed offensive.

In our regular utilization of Objaverse content, we haven’t observed any significant amount of questionable material.
Nevertheless, there are occasional instances of doll-like nudity stemming from basic 3D models, which could be crucial for
accurately depicting humanoid anatomy. Additionally, the training dataset contains some presence of drugs, drug parapherna-
lia, as well as a certain level of blood content and weaponry, resembling what might be encountered in a video game context.
Should the model be provided with imagery featuring these categories of content, it possesses the capability to generate
corresponding 3D models to some extent.

It is to be noted that SV3D mainly focuses on generating hidden details in the user’s input image. If the image is unclear
or some parts are hidden, the model guesses what those parts might look like based on its training data. This means it might
create details similar to what it has seen before. The training data generally follows the standards of 3D modeling and gaming.
However, this could lead to criticisms about the models being too similar to existing trends. But the user’s input image limits
how creative the model can be and reduces the chance of biases showing up in its creations, especially if the image is clear
and straightforward.

B. Data Details

Similar to SVD-MV [2], we render views of a subset of the Objaverse dataset [9] consisting of 150K curated CC-licensed 3D
objects from the original dataset. Each loaded object is scaled such that the largest world-space XYZ extent of its bounding
box is 1. The object is then repositioned such that it this bounding box is centered around the origin.

For both the static and dynamic orbits, we use Blender’s EEVEE renderer to render an 84-frame RGBA orbit at 576×576
resolution. During training, any 21-frame orbit can be subsampled from this by picking any frame as the first frame, and then
choosing every 4th frame after that.

We apply two background colors to each of these images: random RGB color, and white. This results in a doubling of the
number of orbit samples for training. We then encode all of these images into latent space using SVD’s VAE, and using CLIP.
We then store the latent and CLIP embeddings for all of these images along with the corresponding elevation and azimuth
values.

For lighting, we randomly select from a set of 20 curated HDRI envmaps. Each orbit begins with the camera positioned at
azimuth 0. Our camera uses a field-of-view of 33.8 degrees. For each object, we adaptively position the camera to a distance
sufficient to ensure that the rendered object content makes good and consistent use of the image extents without being clipped
in any view.

For static orbits, the camera is positioned at a randomly sampled elevation between [-5, 30] degrees. The azimuth steps
by a constant 360

84 degree delta between each frame. For dynamic orbits, the seqeunce of camera elevations for each orbit are
obtained from a random weighted combination of sinusoids with different frequencies. For each sinusoid, the whole number
period is sampled from [1, 5], the amplitude is sampled from [0.5, 10], and a random phase shift is applied. The azimuth
angles are sampled regularly, and then a small amount of noise is added to make them irregular. The elevation values are
smoothed using a simple convolution kernel and then clamped to a maximum elevation of 89 degrees.

C. Training Details

Our approach involves utilizing the widely used EDM [17] framework, incorporating a simplified diffusion loss for fine-
tuning, as followed in SVD [2]. We eliminate the conditions of ‘fps id’, ‘motion bucket id’, etc. since they are irrelevant
for SV3D. Furthermore, we adjust the loss function to assign lower weights to frames closer to the front-view conditioning
image, ensuring that challenging back views receive equal training focus as the easier front views. To optimize training
efficiency and conserve GPU VRAM, we preprocess and store the precomputed latent and CLIP embeddings for all video
frames in advance. During training, these tensors are directly loaded rather than being computed in real-time. We choose
to finetune the SVD-xt model to output 21 frames instead of 25 frames. We found that with 21 frames we were able to fit
a batch size of 2 on each GPU, instead of 1 with 25 frames at 576×576 resolution. All SV3D models are trained for 105k
iterations with an effective batch size of 64 on 4 nodes of 8 80GB A100 GPUs for around 6 days.
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D. Inference Details
To generate an orbital video during inference, we use 50 steps of the deterministic DDIM sampler [44] with the triangular
classifier-free guidance (CFG) scale described in the main paper. This takes ≈40 seconds for the SV3D model.

E. Additional Details on Illumination Model
We base our rendering model on Spherical Gaussians (SG) [4, 58]. A SG at query location x ∈ R3 is defined as
G(x;µ, c, a) = aes(µ·x−1), where µ ∈ R3 is the axis, s ∈ R the sharpness of the lobe, and a ∈ R the amplitude. Here, we
point out that we only model white light and hence only use a scalar amplitude. One particularly interesting property of SGs
is that the inner product of two SGs is the integral of the product of two SGs. The operation is defined as [48]:

G1(x) ·G2(x) =

∫
Ω

G1(x)G2(x)dx =
1

dm

(
2πa1a2e

dm−λm(1.0− e−2dm)
)

λm = λ1 − λ2 (1)
dm = ||λ1µ1 + λ2µ2||.

In our illumination model we only consider Lambertian shading. Here, the cosine shading term influences the output the
most. This term can be approximated with another SG Gcosine = (x;n, 2.133, 1.17), where n defines the surface normal at
x. The lighting evaluation using SGs Gi then becomes: L =

∑24
i=1

1
π max(Gi ·Gcosine, 0). As defined previously this results

in the full integration of incoming light for each SG and as light is additive evaluating and summing all SGs results in the
complete environment illumination. This L is also used in the Lillum loss described in the main paper. The rendered textured
image is then defined as Î = cdL, where cd is the diffuse albedo. We learn µ, c, a for each SG Gi using reconstruction loss
between these rendered images and SV3D-generated images.

F. Losses and Optimization for 3D Generation
In addition to the masked SDS loss Lmask-sds and illumination loss Lillum detailed in the manuscript, we use several other
losses for 3D reconstruction. Our main reconstruction losses are the pixel-level mean squared error Lmse = ∥I − Î∥2,
LPIPS [59] loss Llpips, and mask loss Lmask = ∥S − Ŝ∥2, where S, Ŝ are the predicted and ground-truth masks. We further
employ a normal loss using the estimated mono normal by Omnidata [11], which is defined as the cosine similarity between
the rendered normal n and estimated pseudo ground truths n̄: Lnormal = 1 − (n · n̄). To regularize the output geometry,
we apply a smooth depth loss inspired by RegNeRF [32]: Ldepth(i, j) = (d(i, j)− d(i, j + 1))

2
+ (d(i, j)− (d(i+ 1, j))

2,
where i, j indicate the pixel coordinate. For surface normal we instead rely on a bilateral smoothness loss similar to [5]. We
found that this is crucial to getting high-frequency details and avoiding over-smoothed surfaces. For this loss we compute the
image gradients of the input image ∇I with a Sobel filter [? ]. We then encourage the gradients of rendered normal ∇n to be
smooth if (and only if) the input image gradients ∇I are smooth. The loss can be written as Lbilateral = e−3∇I

√
1 + ||∇n||.

We also found that adding a spatial smoothness regularization on the albedo is beneficial: Lalbedo = (cd(x)− cd(x+ ϵ))
2,

where cd denotes the albedo, x is a 3D surface point, and ϵ ∈ R3 is a normal distributed offset with a scale of 0.01. The
overall objective is then defined as the weighted sum of these losses. All losses are applied in both coarse and fine stages,
except that we only apply Lmask-sds in the last 200 iterations of the fine stage. We use an Adam optimizer [? ] with a learning
rate of 0.01 for both stages.

G. Additional Ablative Analyses
We conduct additional ablative analyses of our 3D generation pipeline in this section.

G.1. SV3D Models

In Table 7, we compare the quantitative results using different SV3D models and training losses. Both 2D and 3D evaluation
shows that SV3Dp is our best performing model, either for pure photometric reconstruction or SDS-based optimization.

G.2. Static v.s. Dynamic Orbits

We also compare the results using different camera orbits for 3D training in Table 8. The results show that using a dynamic
orbit (sine-30) produces better 3D outputs compared to static orbit since it contains more information of the top and bottom
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Table 7. Ablative results of different SV3D models and training losses. We show that our SV3Dp model with Photo+SDS losses
achieves the best 2D and 3D metrics.

Model Training losses LPIPS↓ PSNR↑ SSIM↑ MSE↓ CLIP-S↑ CD↓ 3D IoU↑
SV3Du Photo 0.132 15.951 0.827 0.032 0.873 0.028 0.583
SV3Du Photo+SDS 0.133 15.957 0.834 0.031 0.871 0.027 0.589
SV3Dc Photo 0.135 15.826 0.832 0.033 0.871 0.029 0.579
SV3Dc Photo+SDS 0.132 16.373 0.834 0.027 0.870 0.027 0.584
SV3Dp Photo 0.124 16.864 0.841 0.024 0.875 0.024 0.611
SV3Dp Photo+SDS 0.119 17.405 0.849 0.021 0.877 0.024 0.614

Table 8. Ablative results of different reference orbits for 3D generation. We show that using a dynamic orbit (sine elevation) with
moderate amplitude performs better than orbits with no or extreme elevation variations.

Training orbit LPIPS↓ PSNR↑ SSIM↑ MSE↓ CLIP-S↑ CD↓ 3D IoU↑
Static 0.125 16.821 0.848 0.025 0.864 0.028 0.610

Sine-30 0.119 17.405 0.849 0.021 0.877 0.024 0.614
Sine-50 0.123 17.057 0.854 0.025 0.873 0.026 0.609

Table 9. Ablative analyses of Masked SDS loss. Overall, our soft-masked SDS loss leads to higher-quality mesh outputs in terms of most
2D and 3D metrics.

Training losses LPIPS↓ PSNR↑ SSIM↑ MSE↓ CLIP-S↑ CD↓ 3D IoU↑
Photo 0.124 16.864 0.841 0.024 0.875 0.024 0.611
Photo+SDS (naive) 0.124 17.007 0.850 0.024 0.867 0.025 0.615
Photo+SDS (hard masked) 0.124 17.335 0.845 0.022 0.877 0.024 0.610
Photo+SDS (soft masked) 0.119 17.405 0.849 0.021 0.877 0.024 0.614

views of the object. However, higher elevation (sine-50) tends to increase inconsistency between multi-view images, and
thus resulting in worse 3D reconstruction. In our experiments, we find that setting the elevation within ±30 degree generally
leads to desirable 3D outputs.

G.3. Masked SDS Loss

Finally, we show the ablative results of our SDS loss in Table 9. We compare the results of 1) pure photometric losses, 2) with
naive SDS loss (no masking), 3) with hard-masked SDS loss by thresholding the dot product of surface normal and camera
viewing angle as visibility masks, and 4) with soft-masked SDS loss as described in the manuscript. Overall, adding SDS
guidance from the SV3D model can improve the 2D metrics while maintaining similar 3D metrics. Our novel soft-masked
SDS loss generally achieves the best results compared to other baselines.

H. Additional Visual Results
In this section, we show more results of novel view synthesis and 3D generation.

H.1. Novel View Synthesis

We show the additional NVS results on OmniObject3D [52] and real-world images in Fig. 13 and Fig. 14, respectively. The
generated novel multi-view images by SV3D are more detailed and consistent compared to prior state-of-the-arts.

H.2. 3D Generation

We show the additional 3D generation results on OmniObject3D [52] and real-world images in Fig. 15 and Fig. 16, respec-
tively. Thanks to the consistent multi-view images by SV3D and the novel Masked SDS loss, our 3D generations are detailed,
high-fidelity, and generalizable to a wide range of images. Since Free3D [60] does not include a 3D generation method, we
run our 3D pipeline on its generated multi-view images for fair 3D comparion.
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Figure 13. NVS Results on OmniObject3D [52]. Notice the consistent color, geometry, and pose in SV3D NVS outputs compared to
prior works.

Figure 14. NVS Results on Real-World images. Notice the consistent color, geometry, and pose in SV3D NVS outputs compared to prior
works.
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Input image SV3D EscherNet Free3D Stable Zero123

Figure 15. Mesh Results on OmniObject3D [52]. Notice the accurate shape and details in our reconstructions even from the diverse
images.
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Input image SV3D EscherNet Free3D Stable Zero123

Figure 16. Mesh Results on Real-World images. Notice the accurate shape and details in our reconstructions even from the diverse
images in-the-wild.
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